白光LED燈珠用紅色熒光粉的研究
現有技術所研制出的白光LED燈珠熒光粉普遍存在顯色指數低、色溫高、偏向于冷白光等問題,主要的原因是所制備的熒光粉中缺少紅光成分,因此研究具有高效率的紅色熒光粉尤為重要。按目前研究狀況,按基質材料分類可主要分為以下幾種體系。
1.硫化物、硫氧化物和氧化釔體系
堿土金屬可以用來充當硫化物紅色熒光粉基質的陽離子, Eu2+為硫化物熒光粉的激活離子且這類熒光粉的發光效率也較高,在白光燈珠中的應用十分廣泛。一些學者利用固相反應法將 Ca 元素摻入到 SrS: Eu2+基質,制備出了(Cax,Sr1-x)S: Eu2+紅色熒光粉材料,通過研究測試發現:摻雜劑的引入會引起樣品發射峰位置的改變,當 Ca2+濃度的增加時,會使主發射峰位置向長波方向移動,并且強度也隨之增強。
以氧化釔或硫氧化物為基質的紅色熒光粉其激活離子通常選用 Eu3+,激發峰在通常在 350nm、 380nm、 460nm 范圍處,另一些學者研制出了 Y2O2S: xEu3+紅色熒光粉,且研究結果表明,其發射峰位置隨著Eu3+離子濃度的逐漸增加向右偏移最終可達到 626nm 處。
利用射頻濺射法成功研制出 Y2O2S: Eu 發光薄膜材料,測試得出,其發光光譜與商用的 Y2O2S: Eu 熒光粉十分類似。盡管可被近紫外光以及藍光 LED 芯片激發的氧化釔或硫氧化物紅色熒光粉已被開發出來, 但是由于其基質發光效率偏低因而限制了其使用的廣泛性。此外,硫化物熒光粉材料的化學性質及其不穩定,遇高溫或水即發生分解,容易危害環境。
2.氮化物體系
氮化物體系紅色熒光粉其基質具備優異的熱穩定性及化學穩定性,因此被廣泛研究,通常選用 Eu2+為激活離子。 Sr2Si5N8: Eu 紅色熒光粉可吸收的波長范圍從近紫外到藍綠光且發射的黃、橙、紅光波長范圍從 550 nm~750 nm,且效率很高,其發射波長隨 Eu2+摻雜濃度的增加逐漸向長波方向紅移,通過熒光測試發現,此LED燈珠用紅色熒光粉具有良好的發展前景。
利用高溫固相法制備出以 CaAlSiN3 為摻雜 Eu2+的熒光粉粉體,經研究測試表明在溫度為 1 700℃ ,壓力為 0.65 MPa 下保溫 3 h 且摻雜濃度為 4mol%時所制備出的熒光粉結晶性能最好發光強度最高。
到目前為止,對比商業的硫化物紅粉來說,氮化物紅粉的紅光具有更大的可控制性,而且其物理化學性質也高于硫化物。但是,氮化物紅色熒光粉對制備條件的要求卻十分的嚴苛,一般要在高溫達到1400℃~2000℃ 、長時間保溫并且需要在氮氣的保護下才能制備出來。這必將增加熒光粉的成本同時也會耗費大量的資源。
3.硅酸鹽體系
硅酸鹽體系眾多且性能優異,因此被廣泛用于熒光粉的研究,其激活離子通常選用 Eu3+用以制備紅色熒光粉。在探討以激活離子 Eu3+摻雜硅酸鹽基紅色熒光粉的研究中,歸納了前人的研究經驗,在研究 Eu3+離子在 5D0→7F2 處的躍遷中分別利用了溶膠-凝膠法、凝膠-燃燒法、高溫固相法等,并且探討了不同的電荷補償劑、激活劑的摻雜濃度、助熔劑的添加狀況等影響因素對發光效果的影響。
以高純度的NH4H2PO4、CaCO3、 SiO2 等為原料,從含堿金屬的鹵化鹽中獲取電荷補償離子,采用高溫固相法制備出了適用于近紫外光芯片激發的 Ca5(PO4)2SiO4: Eu3+, A+(A=Na, Li, K)紅色熒光粉材料。經過研究測試得出,該熒光粉材料的熒光性能十分優異,其激發主峰位于 395nm 處,位于近紫外區內,發射主峰位于 615nm 處,熒光強度與色坐標十分接近于商業用的熒光粉。
利用溶膠凝膠法制備出了以 LaPO4-5SiO2 為復合基質摻雜 Eu3+為激活劑的紅色熒光粉。經測試研究表明所制備的硅酸鹽基紅色熒光粉的性能優異,Eu3+的最佳摻雜濃度為 7mol%,最佳激發波長位于 395 nm(紫光區)處,發射波長位于 612 nm(紅光區)處。
4.鎢鉬酸鹽體系
鎢鉬酸鹽是物理化學性質均非常穩定的無機材料,因而被廣泛應用為熒光粉的基質材料。在研究紅色熒光粉時其激活離子常選用 Eu3+,鎢鉬酸鹽用于紅色熒光粉的研究層出不窮。
利用燃燒法和溶膠-凝膠法結合固相法制備出了 Sr(1-x)MoO4: xEu3+紅色熒光粉。并且利用固相法合成了 Gd2(MO4)3(M=Mo,W): Eu3+,Sm3+紅色熒光粉。經過測試得:所制備的熒光粉可被紫外(UV)光及藍光有效的激發,且其發射波波長范圍與已被商用的以 GaN 為基質的紅色熒光粉的波長十分相近。(拓展LED http://m.sdbc.cc)